完美体育平台官网
联系我们 学校首页
  • 学院概况
    学院简介
    学院领导
    组织机构
    治理机构
    联系方式
    学院宣传
  • 师资队伍
    杰出人才
    教工名录
    应用数学研究中心
    博士后
    退休职工
    人物专访
  • 党群工作
    师生党建
    工会教代会
    校友工作
  • 人才培养
    本科生培养
    研究生培养
    研究生招生
  • 科研学术
    科研概况
    科研方向
    科研成果
    学术报告
    学术会议
  • 交流合作
    人才培养项目
    学术研究项目
    国际会议
    北京交叉科学学会
    北京市高教学会数学研究分会
  • 学生工作
    学工动态
    学工队伍
    先锋榜样
    评奖评优
    学科竞赛
    事务办理
    迎新专栏
    就业专栏
  • 重点实验室
    信息安全的数学理论与计算
    复杂信息数学表征分析与应用
    代数李理论与分析
  • 应用数学中心
  • 人才招聘
  • 服务指南
    人事工作
    党务工作
    学生工作
    工会服务
    货物采购
    学院VI
    本科生教学
    研究生教学
    科研财务
  • 学院概况
    学院简介
    学院领导
    组织机构
    治理机构
    联系方式
    学院宣传
  • 师资队伍
    杰出人才
    教工名录
    应用数学研究中心
    博士后
    退休职工
    人物专访
  • 党群工作
    师生党建
    工会教代会
    校友工作
  • 人才培养
    本科生培养
    研究生培养
    研究生招生
  • 科研学术
    科研概况
    科研方向
    科研成果
    学术报告
    学术会议
  • 交流合作
    人才培养项目
    学术研究项目
    国际会议
    北京交叉科学学会
    北京市高教学会数学研究分会
  • 学生工作
    学工动态
    学工队伍
    先锋榜样
    评奖评优
    学科竞赛
    事务办理
    迎新专栏
    就业专栏
  • 重点实验室
    信息安全的数学理论与计算
    复杂信息数学表征分析与应用
    代数李理论与分析
  • 应用数学中心
  • 人才招聘
  • 服务指南
    人事工作
    党务工作
    学生工作
    工会服务
    货物采购
    学院VI
    本科生教学
    研究生教学
    科研财务
中文
学校首页

科研学术

  • 科研概况
  • 科研方向
  • 科研成果
  • 学术报告
  • 学术会议
科研学术
  • 科研概况
  • 科研方向
  • 科研成果
  • 学术报告
  • 学术会议
首页 - 科研学术 - 科研成果

北理工在不可压缩欧拉方程螺旋对称解的集中性问题方面取得研究成果

发布时间:2023-06-07

日前,完美体育平台官网万捷副研究员在国际权威学术期刊《Mathematische Annalen》发表题为“Structure of Green’s function of elliptic equations and helical vortex patches for 3D incompressible Euler equations”的研究论文。该论文给出了散度型二阶椭圆算子Green函数的展开公式,并由此证明了无限管道区域上三维不可压缩欧拉方程集中到涡丝方程的螺旋对称涡补丁解的存在性和轨道稳定性。某种程度上给出了涡丝猜想在螺旋对称情形下的一个证明。

三维不可压缩欧拉方程的涡丝猜想是流体力学中十分重要的问题之一。1908年,DaRios和Levi-Civita通过研究截面半径很小的涡管的运动,得到涡管的中心线Γ满足如下涡丝方程 ∂tΓ=c∂sΓ×∂ssΓ。该方程又称为副法向曲率流(Binormal Curvature Flow)。当三维不可压缩欧拉方程的初始涡度场集中到一维曲线Γ(0)时,任意t时刻演化的涡度场是否会集中到满足涡丝方程的Γ(t),目前为止仍未解决。该问题又称为涡丝猜想,并受到了Davila,Fraenkel,Jerrard, VanSchaftingen, Wei等著名数学家的广泛关注。目前这方面的研究主要针对几种特殊情况:涡丝为直线,平移圆周以及平移旋转螺旋线。当涡丝是螺旋线时,是否可以构造一族三维欧拉方程的真实解,使得对应的涡度场的截面具有紧支集且集中到满足涡丝方程的平移旋转螺线,仍然是未知的。其主要困难是求一类散度型半线性二阶椭圆方程组解的集中性问题,而散度型椭圆算子对应Green函数的渐近展开是没有的。

万捷与中科院数学与系统科学研究院曹道民研究员利用椭圆方程理论,创造性的给出散度型二阶椭圆算子L=-∇⋅(K(x)∇)在Dirichlet边界条件下的Green函数的展开公式:

结合该式以及重排函数理论,万捷等人证明了存在一族三维欧拉方程的涡补丁解,使得对应的涡度场Wε拓扑上为截面半径ε的螺旋涡管,且当ε趋于零时Wε集中到满足涡丝方程的平移旋转螺线。 利用能量、角动量守恒以及紧性分析,文章还得到了涡补丁解在Lp扰动下的轨道稳定性。《Mathematische Annalen》期刊的审稿人评价“It's a solid work, with a significant contribution to an interesting problem and clever use of a broad set of techniques.”

这项研究工作是由万捷副研究员与中科院数学与系统科学研究院曹道民研究员合作完成,万捷副研究员为通讯作者,本项工作得到国家自然科学基金和完美体育平台官网青年教师学术启动计划的资助。

论文链接:https://link.springer.com/article/10.1007/s00208-023-02589-8

附研究团队及个人简介:

万捷,特聘副研究员,北理工完美体育平台官网偏微分方程团队成员。本科毕业于中国科学技术大学、博士毕业于中科院数学与系统科学研究院。长期从事流体力学特别是不可压缩欧拉方程的研究工作。在Mathematische Annalen 、Journal of Functional Analysis、SIAMJournal Math Analysis 等权威期刊发表了十余篇高水平学术论文。

友情链接
>完美体育平台官网
>中国数学学会

地址:北京市海淀区中关村南大街5号完美体育平台官网

邮编:100081

  • 官方微信公众号

版权所有:完美.(中国)体育官方网站-365WM SPORTS