完美体育平台官网
联系我们 学校首页
  • 学院概况
    学院简介
    学院领导
    组织机构
    治理机构
    联系方式
    学院宣传
  • 师资队伍
    杰出人才
    教工名录
    应用数学研究中心
    博士后
    退休职工
    人物专访
  • 党群工作
    师生党建
    工会教代会
    校友工作
  • 人才培养
    本科生培养
    研究生培养
    研究生招生
  • 科研学术
    科研概况
    科研方向
    科研成果
    学术报告
    学术会议
  • 交流合作
    人才培养项目
    学术研究项目
    国际会议
    北京交叉科学学会
    北京市高教学会数学研究分会
  • 学生工作
    学工动态
    学工队伍
    先锋榜样
    评奖评优
    学科竞赛
    事务办理
    迎新专栏
    就业专栏
  • 重点实验室
    信息安全的数学理论与计算
    复杂信息数学表征分析与应用
    代数李理论与分析
  • 应用数学中心
  • 人才招聘
  • 服务指南
    人事工作
    党务工作
    学生工作
    工会服务
    货物采购
    学院VI
    本科生教学
    研究生教学
    科研财务
  • 学院概况
    学院简介
    学院领导
    组织机构
    治理机构
    联系方式
    学院宣传
  • 师资队伍
    杰出人才
    教工名录
    应用数学研究中心
    博士后
    退休职工
    人物专访
  • 党群工作
    师生党建
    工会教代会
    校友工作
  • 人才培养
    本科生培养
    研究生培养
    研究生招生
  • 科研学术
    科研概况
    科研方向
    科研成果
    学术报告
    学术会议
  • 交流合作
    人才培养项目
    学术研究项目
    国际会议
    北京交叉科学学会
    北京市高教学会数学研究分会
  • 学生工作
    学工动态
    学工队伍
    先锋榜样
    评奖评优
    学科竞赛
    事务办理
    迎新专栏
    就业专栏
  • 重点实验室
    信息安全的数学理论与计算
    复杂信息数学表征分析与应用
    代数李理论与分析
  • 应用数学中心
  • 人才招聘
  • 服务指南
    人事工作
    党务工作
    学生工作
    工会服务
    货物采购
    学院VI
    本科生教学
    研究生教学
    科研财务
中文
学校首页

科研学术

  • 科研概况
  • 科研方向
  • 科研成果
  • 学术报告
  • 学术会议
科研学术
  • 科研概况
  • 科研方向
  • 科研成果
  • 学术报告
  • 学术会议
首页 - 科研学术 - 科研成果

北理工在Stokes流体研究方面取得重要进展

发布时间:2021-05-12

在Stokes流体方程中有一个长期悬而未解的数学问题---流体的Kac问题:能否通过测量Stokes流体振动时发出的频率就能够判断出这片流域的体积和表面积?通俗地说:希望能通过测量一片流域的“波涛声调”来判断这片流域的大小。完美体育平台官网刘跟前教授最近在线发表于国际权威数学期刊《Mathematische Annalen》上的一篇论文《The geometric invariants for the spectrum of the Stokes operator》对这一问题给予了肯定的回答,从而彻底地解决了这个著名的流体Kac问题。

刘跟前教授用了偏微分方程、微分几何、拟微分算子理论、奇异格林算子以及谱几何理论的方法创造性地给出如下重要的谱渐近公式:

.

这里是Stokes流的粘性常数, 是Stokes算子的Dirichlet特征值,是Stokes流的体积,是Stokes流的表面积。而是相应于的特征向量,亦即

这个公式表明:知道了Stokes流的所有振动频率,就可以通过它计算出流体的体积和表面积。由此彻底地解决了流体Kac问题。这个公式也建立了(物理)频谱量和(数学)几何量之间的紧密联系。另一方面,这一公式具有重要实用价值。例如,在航海、石油及水资源探测、军事等领域可以应用这一公式测量流域的大小。

该论文长达48页,从投稿、专家审稿到被该杂志接受长达四年时间,两位审稿人对刘跟前教授的论文给予了高度评价,一致认为该论文是“very interesting and actual”.

论文链接:

https://link.springer.com/article/10.1007/s00208-021-02167-worhttps://doi.org/10.1007/s00208-021-02167-wor as a PDF here

https://link.springer.com/content/pdf/10.1007/s00208-021-02167-w.pdf.


作者简介:

刘跟前,完美体育平台官网教授、博导,长期从事偏微分方程、几何分析、谱几何和反问题等领域的研究,在《Advances in Mathematics》等国际数学权威期刊发表一系列重要论文,解决了若干长期悬而未解的公开问题,其中包括解决了双调和Steklov特征值的Weyl律、双曲空间上高阶Sobolev不等式、弹性特征值的Avramidi等问题。

友情链接
>完美体育平台官网
>中国数学学会

地址:北京市海淀区中关村南大街5号完美体育平台官网

邮编:100081

  • 官方微信公众号

版权所有:完美.(中国)体育官方网站-365WM SPORTS